4a12f2d67328fb4ccb585fa8b4d68e790f3a7eb3
- Research Agent: Projects 관련 작업 시 /home/ubuntu/Projects 경로 명확히 사용 - Research Agent: Kubernetes 상태 분석을 kubectl로 자유롭게 수행하도록 강화 - Code Agents: 파일 수정 후 git add, commit, push까지 자동 수행 (ArgoCD 자동 배포) - 모든 에이전트: Projects 관련 요청 시 자동 탐색은 유지하되 /home/ubuntu/Projects 경로 사용
MAS (Multi-Agent System)
MAS is a unified UI and orchestration layer for multiple AI agents (similar to ChatGPT, Claude, Gemini), running on your own Kubernetes cluster.
🎯 Architecture
Agents
- Claude Code (Orchestrator): overall coordinator & DevOps expert
- Qwen Backend: backend engineer (FastAPI, Node.js)
- Qwen Frontend: frontend engineer (Next.js, React)
- Qwen SRE: monitoring & reliability engineer
Tech stack
- Backend: LangGraph + LangChain + FastAPI
- UI: Chainlit (chat-style UI)
- Database: PostgreSQL (CNPG)
- Cache: Redis
- LLMs: Claude API + Groq Llama 3.x (OpenAI-compatible API)
- Deploy: Kubernetes + ArgoCD
🚀 Local development
1. Run with Docker Compose
cd deploy/docker
# Copy or create .env and fill in your API keys
# (ANTHROPIC_API_KEY, GROQ_API_KEY, etc.)
# Start the full stack
docker compose up -d
# Tail logs
docker compose logs -f mas
Open: http://localhost:8000
2. Run backend directly (Python)
cd services/backend
# Create venv
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Environment variables
cp .env.example .env
# Edit .env and set your API keys
# Run Chainlit app
chainlit run chainlit_app.py
☸️ Kubernetes deployment
1. Create namespace and secrets
kubectl create namespace mas
kubectl create secret generic mas-api-keys \
--from-literal=anthropic-api-key=YOUR_CLAUDE_KEY \
--from-literal=openai-api-key=YOUR_OPENAI_KEY \
--from-literal=google-api-key=YOUR_GEMINI_KEY \
-n mas
2. Deploy via ArgoCD
# Create ArgoCD Application
kubectl apply -f deploy/argocd/mas.yaml
# Sync and check status
argocd app sync mas
argocd app get mas
3. Deploy from your server (example)
# SSH into your k3s master
ssh oracle-master
# Apply ArgoCD Application
sudo kubectl apply -f /path/to/deploy/argocd/mas.yaml
# Check status
sudo kubectl get pods -n mas
sudo kubectl logs -f deployment/mas -n mas
Ingress example (if configured): https://mas.mayne.vcn
🎨 UI customization
Chainlit theme & behavior
You can customize the UI via services/backend/.chainlit:
[UI]
name = "MAS"
show_readme_as_default = true
default_collapse_content = true
Agent prompts
System prompts for each agent live in services/backend/agents.py.
You can tune:
- how the Orchestrator routes tasks
- coding style of backend/frontend agents
- SRE troubleshooting behavior
📊 Observability
Prometheus ServiceMonitor (example)
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: mas
namespace: mas
spec:
selector:
matchLabels:
app: mas
endpoints:
- port: http
path: /metrics
Grafana dashboards
Recommended panels:
- LangGraph workflow metrics
- Per-agent latency & error rate
- Token usage and cost estimates
- Backend API latency & 5xx rate
🔧 Advanced features
1. MCP (Model Context Protocol) with Claude
Using Claude Code as Orchestrator, MAS can access:
- Filesystem (read/write project files)
- Git (status, commit, push, PR)
- SSH (run remote commands on your servers)
- PostgreSQL (schema inspection, migrations, queries)
- Kubernetes (kubectl via MCP tool)
This allows fully automated workflows like:
- “Create a new service, add deployment manifests, and deploy to k3s.”
- “Debug failing pods and propose a fix, then open a PR.”
2. Multi-agent collaboration (LangGraph)
Typical workflow:
User request
↓
Claude Orchestrator
↓ decides which agent(s) to call
Backend Dev → Frontend Dev → SRE
↓
Claude Orchestrator (review & summary)
↓
Final answer to user
Examples:
- Full‑stack feature (API + UI + monitoring)
- Infra rollout (Harbor, Tekton, CNPG, MetalLB) with validation
📝 Usage examples
Backend API request
User: "Create a signup API with FastAPI.
Use PostgreSQL and JWT tokens."
🎼 Orchestrator:
→ routes to Qwen Backend
⚙️ Qwen Backend:
→ generates FastAPI router, Pydantic models, DB schema, JWT logic
🎼 Orchestrator:
→ reviews, suggests improvements, and outputs final code snippet & file layout
Frontend component request
User: "Build a responsive dashboard chart component using Recharts."
🎼 Orchestrator:
→ routes to Qwen Frontend
🎨 Qwen Frontend:
→ generates a Next.js/React component with TypeScript and responsive styles
🎼 Orchestrator:
→ explains how to integrate it into your existing app
Infra / SRE request
User: "Prometheus is firing high memory alerts for the PostgreSQL pod.
Help me stabilize it."
🎼 Orchestrator:
→ routes to Qwen SRE
📊 Qwen SRE:
→ analyzes metrics & logs (conceptually),
proposes tuning (Postgres config, indexes, pooler),
and suggests alert threshold adjustments.
🤝 Contributing
Contributions are welcome:
- New agents (e.g., data engineer, security engineer)
- New tools (Harbor, Tekton, CNPG, MetalLB integrations)
- Better prompts and workflows
- Docs and examples
Feel free to open issues or PRs in your Git repository.
📄 License
MIT
Description
Languages
Python
98%
Dockerfile
2%