REFACTOR(app): use Claude API only

- Remove Groq API integration
- Use only Anthropic Claude API
This commit is contained in:
2025-12-24 18:29:35 +09:00
parent a382985c79
commit 48012c4864
13 changed files with 334 additions and 732 deletions

123
README.md
View File

@@ -1,21 +1,39 @@
# MAS (Multi-Agent System)
MAS is a unified UI and orchestration layer for multiple AI agents (similar to ChatGPT, Claude, Gemini), running on your own Kubernetes cluster.
**K8s Infrastructure Planning System** - AI agents that analyze your Kubernetes cluster and generate implementation plans.
## 🎯 Architecture
## 🎯 What is this?
### Agents
- **Claude Code (Orchestrator)**: overall coordinator & DevOps expert
- **Qwen Backend**: backend engineer (FastAPI, Node.js)
- **Qwen Frontend**: frontend engineer (Next.js, React)
- **Qwen SRE**: monitoring & reliability engineer
MAS는 Kubernetes 클러스터 상태를 분석하고, 인프라 배포 계획을 수립하는 AI 에이전트 시스템입니다.
**사용 시나리오:**
1. "Tekton을 도입하고 싶어" → 클러스터 분석 → YAML 구조 설계 → 구현 가이드 생성
2. 생성된 Markdown 프롬프트를 복사해서 다른 AI (Claude Code, ChatGPT 등)에 붙여넣기
3. 실제 코드 구현은 다른 AI가 담당
## 🤖 Agents
### Planning Agent (Claude 4.5)
- 폴더 구조 설계 (deploy/tool/base, overlays/prod, etc.)
- YAML 파일 조직화
- K8s 리소스 계획 (Namespace, Deployment, Service, etc.)
### Research Agent (Groq Llama 3.3)
- kubectl 명령어로 클러스터 상태 분석
- 기존 리소스 확인 (namespaces, storage classes, quotas)
- 호환성 검토
### Prompt Generator (Claude 4.5)
- Markdown 형식의 구현 가이드 생성
- YAML 예시 포함
- 검증 명령어 제공
### Tech stack
- **Backend**: LangGraph + LangChain + FastAPI
- **UI**: Chainlit (chat-style UI)
- **Database**: PostgreSQL (CNPG)
- **Cache**: Redis
- **LLMs**: Claude API + **Groq Llama 3.x** (OpenAI-compatible API)
- **Backend**: LangGraph + LangChain + FastAPI
- **UI**: Chainlit (chat-style UI)
- **Database**: PostgreSQL (CNPG)
- **Cache**: Redis
- **LLMs**: Claude API (Orchestrator, Planning, Prompt Gen) + Groq Llama 3.3 (Research)
- **Deploy**: Kubernetes + ArgoCD
---
@@ -195,61 +213,82 @@ Examples:
## 📝 Usage examples
### Backend API request
### Example 1: Deploy Tekton
```text
User: "Create a signup API with FastAPI.
Use PostgreSQL and JWT tokens."
User: "Tekton을 도입하고 싶어"
🎼 Orchestrator:
→ routes to Qwen Backend
→ routes to Planning Agent
⚙️ Qwen Backend:
generates FastAPI router, Pydantic models, DB schema, JWT logic
📋 Planning Agent:
designs folder structure: deploy/tekton/{base,overlays/prod}
→ plans K8s resources: Namespace, RBAC, Deployments, Services
→ identifies research needs
🎼 Orchestrator:
→ reviews, suggests improvements, and outputs final code snippet & file layout
🔍 Research Agent:
→ runs: kubectl get namespaces, kubectl get storageclasses
→ checks: existing tekton resources, cluster version
→ analyzes: available resources and quotas
📝 Prompt Generator:
→ generates comprehensive Markdown implementation guide
→ includes: YAML examples, folder structure, validation commands
✨ Output: Markdown prompt ready to copy-paste into Claude Code/ChatGPT
```
### Frontend component request
### Example 2: Deploy Harbor Registry
```text
User: "Build a responsive dashboard chart component using Recharts."
User: "Harbor를 배포하려고 해"
🎼 Orchestrator:
→ routes to Qwen Frontend
→ Planning: folder structure + YAML organization
→ Research: storage classes, ingress controllers, TLS setup
→ Prompt Gen: Markdown guide with Harbor Helm values, ingress config, etc.
🎨 Qwen Frontend:
→ generates a Next.js/React component with TypeScript and responsive styles
🎼 Orchestrator:
→ explains how to integrate it into your existing app
✨ Copy the prompt → Paste into another AI → Get actual implementation
```
### Infra / SRE request
### Example 3: Deploy Prometheus
```text
User: "Prometheus is firing high memory alerts for the PostgreSQL pod.
Help me stabilize it."
User: "Prometheus를 설치하고 싶어"
🎼 Orchestrator:
→ routes to Qwen SRE
→ Planning: monitoring stack structure (Prometheus, Grafana, AlertManager)
→ Research: existing ServiceMonitors, PVC requirements
→ Prompt Gen: Complete implementation guide
📊 Qwen SRE:
→ analyzes metrics & logs (conceptually),
proposes tuning (Postgres config, indexes, pooler),
and suggests alert threshold adjustments.
✨ Result: Ready-to-use prompt for code generation
```
---
## 🔧 Workflow
```
User Input: "Deploy X"
Orchestrator (조율)
Planning Agent (구조 설계)
Research Agent (클러스터 분석)
Prompt Generator (가이드 생성)
Output: Markdown Implementation Guide
User copies → Pastes to Claude Code/ChatGPT → Gets actual code
```
## 🤝 Contributing
Contributions are welcome:
- New agents (e.g., data engineer, security engineer)
- New tools (Harbor, Tekton, CNPG, MetalLB integrations)
- Better prompts and workflows
- Docs and examples
- Improve Planning Agent prompts for better folder structures
- Enhance Research Agent kubectl commands
- Add more infrastructure tools (Harbor, Tekton, CNPG, MetalLB, etc.)
- Better Markdown template for Prompt Generator
Feel free to open issues or PRs in your Git repository.