REFACTOR(app): use Claude API only
- Remove Groq API integration - Use only Anthropic Claude API
This commit is contained in:
123
README.md
123
README.md
@@ -1,21 +1,39 @@
|
||||
# MAS (Multi-Agent System)
|
||||
|
||||
MAS is a unified UI and orchestration layer for multiple AI agents (similar to ChatGPT, Claude, Gemini), running on your own Kubernetes cluster.
|
||||
**K8s Infrastructure Planning System** - AI agents that analyze your Kubernetes cluster and generate implementation plans.
|
||||
|
||||
## 🎯 Architecture
|
||||
## 🎯 What is this?
|
||||
|
||||
### Agents
|
||||
- **Claude Code (Orchestrator)**: overall coordinator & DevOps expert
|
||||
- **Qwen Backend**: backend engineer (FastAPI, Node.js)
|
||||
- **Qwen Frontend**: frontend engineer (Next.js, React)
|
||||
- **Qwen SRE**: monitoring & reliability engineer
|
||||
MAS는 Kubernetes 클러스터 상태를 분석하고, 인프라 배포 계획을 수립하는 AI 에이전트 시스템입니다.
|
||||
|
||||
**사용 시나리오:**
|
||||
1. "Tekton을 도입하고 싶어" → 클러스터 분석 → YAML 구조 설계 → 구현 가이드 생성
|
||||
2. 생성된 Markdown 프롬프트를 복사해서 다른 AI (Claude Code, ChatGPT 등)에 붙여넣기
|
||||
3. 실제 코드 구현은 다른 AI가 담당
|
||||
|
||||
## 🤖 Agents
|
||||
|
||||
### Planning Agent (Claude 4.5)
|
||||
- 폴더 구조 설계 (deploy/tool/base, overlays/prod, etc.)
|
||||
- YAML 파일 조직화
|
||||
- K8s 리소스 계획 (Namespace, Deployment, Service, etc.)
|
||||
|
||||
### Research Agent (Groq Llama 3.3)
|
||||
- kubectl 명령어로 클러스터 상태 분석
|
||||
- 기존 리소스 확인 (namespaces, storage classes, quotas)
|
||||
- 호환성 검토
|
||||
|
||||
### Prompt Generator (Claude 4.5)
|
||||
- Markdown 형식의 구현 가이드 생성
|
||||
- YAML 예시 포함
|
||||
- 검증 명령어 제공
|
||||
|
||||
### Tech stack
|
||||
- **Backend**: LangGraph + LangChain + FastAPI
|
||||
- **UI**: Chainlit (chat-style UI)
|
||||
- **Database**: PostgreSQL (CNPG)
|
||||
- **Cache**: Redis
|
||||
- **LLMs**: Claude API + **Groq Llama 3.x** (OpenAI-compatible API)
|
||||
- **Backend**: LangGraph + LangChain + FastAPI
|
||||
- **UI**: Chainlit (chat-style UI)
|
||||
- **Database**: PostgreSQL (CNPG)
|
||||
- **Cache**: Redis
|
||||
- **LLMs**: Claude API (Orchestrator, Planning, Prompt Gen) + Groq Llama 3.3 (Research)
|
||||
- **Deploy**: Kubernetes + ArgoCD
|
||||
|
||||
---
|
||||
@@ -195,61 +213,82 @@ Examples:
|
||||
|
||||
## 📝 Usage examples
|
||||
|
||||
### Backend API request
|
||||
### Example 1: Deploy Tekton
|
||||
|
||||
```text
|
||||
User: "Create a signup API with FastAPI.
|
||||
Use PostgreSQL and JWT tokens."
|
||||
User: "Tekton을 도입하고 싶어"
|
||||
|
||||
🎼 Orchestrator:
|
||||
→ routes to Qwen Backend
|
||||
→ routes to Planning Agent
|
||||
|
||||
⚙️ Qwen Backend:
|
||||
→ generates FastAPI router, Pydantic models, DB schema, JWT logic
|
||||
📋 Planning Agent:
|
||||
→ designs folder structure: deploy/tekton/{base,overlays/prod}
|
||||
→ plans K8s resources: Namespace, RBAC, Deployments, Services
|
||||
→ identifies research needs
|
||||
|
||||
🎼 Orchestrator:
|
||||
→ reviews, suggests improvements, and outputs final code snippet & file layout
|
||||
🔍 Research Agent:
|
||||
→ runs: kubectl get namespaces, kubectl get storageclasses
|
||||
→ checks: existing tekton resources, cluster version
|
||||
→ analyzes: available resources and quotas
|
||||
|
||||
📝 Prompt Generator:
|
||||
→ generates comprehensive Markdown implementation guide
|
||||
→ includes: YAML examples, folder structure, validation commands
|
||||
|
||||
✨ Output: Markdown prompt ready to copy-paste into Claude Code/ChatGPT
|
||||
```
|
||||
|
||||
### Frontend component request
|
||||
### Example 2: Deploy Harbor Registry
|
||||
|
||||
```text
|
||||
User: "Build a responsive dashboard chart component using Recharts."
|
||||
User: "Harbor를 배포하려고 해"
|
||||
|
||||
🎼 Orchestrator:
|
||||
→ routes to Qwen Frontend
|
||||
→ Planning: folder structure + YAML organization
|
||||
→ Research: storage classes, ingress controllers, TLS setup
|
||||
→ Prompt Gen: Markdown guide with Harbor Helm values, ingress config, etc.
|
||||
|
||||
🎨 Qwen Frontend:
|
||||
→ generates a Next.js/React component with TypeScript and responsive styles
|
||||
|
||||
🎼 Orchestrator:
|
||||
→ explains how to integrate it into your existing app
|
||||
✨ Copy the prompt → Paste into another AI → Get actual implementation
|
||||
```
|
||||
|
||||
### Infra / SRE request
|
||||
### Example 3: Deploy Prometheus
|
||||
|
||||
```text
|
||||
User: "Prometheus is firing high memory alerts for the PostgreSQL pod.
|
||||
Help me stabilize it."
|
||||
User: "Prometheus를 설치하고 싶어"
|
||||
|
||||
🎼 Orchestrator:
|
||||
→ routes to Qwen SRE
|
||||
→ Planning: monitoring stack structure (Prometheus, Grafana, AlertManager)
|
||||
→ Research: existing ServiceMonitors, PVC requirements
|
||||
→ Prompt Gen: Complete implementation guide
|
||||
|
||||
📊 Qwen SRE:
|
||||
→ analyzes metrics & logs (conceptually),
|
||||
proposes tuning (Postgres config, indexes, pooler),
|
||||
and suggests alert threshold adjustments.
|
||||
✨ Result: Ready-to-use prompt for code generation
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🔧 Workflow
|
||||
|
||||
```
|
||||
User Input: "Deploy X"
|
||||
↓
|
||||
Orchestrator (조율)
|
||||
↓
|
||||
Planning Agent (구조 설계)
|
||||
↓
|
||||
Research Agent (클러스터 분석)
|
||||
↓
|
||||
Prompt Generator (가이드 생성)
|
||||
↓
|
||||
Output: Markdown Implementation Guide
|
||||
↓
|
||||
User copies → Pastes to Claude Code/ChatGPT → Gets actual code
|
||||
```
|
||||
|
||||
## 🤝 Contributing
|
||||
|
||||
Contributions are welcome:
|
||||
- New agents (e.g., data engineer, security engineer)
|
||||
- New tools (Harbor, Tekton, CNPG, MetalLB integrations)
|
||||
- Better prompts and workflows
|
||||
- Docs and examples
|
||||
- Improve Planning Agent prompts for better folder structures
|
||||
- Enhance Research Agent kubectl commands
|
||||
- Add more infrastructure tools (Harbor, Tekton, CNPG, MetalLB, etc.)
|
||||
- Better Markdown template for Prompt Generator
|
||||
|
||||
Feel free to open issues or PRs in your Git repository.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user